Blog Archives

Brain networks associated with sublexical properties of Chinese characters

Cognitive models of reading all assume some division of labor among processing pathways in mapping among print, sound and meaning. Many studies of the neural basis of reading have used task manipulations such as rhyme or synonym judgment to tap these processes independently. Here we take advantage of specific properties of the Chinese writing system to test how differential availability of sublexical information about sound and meaning, as well as the orthographic structure of characters, pseudo-characters and “artificial” control stimuli influence brain activation in the context of the same one-back task. Analyses combine a data-driven approach that identifies temporally coherent patterns of activity over the course of the entire experiment with hypothesis-testing based on the correlation of these patterns with predictors for different stimulus classes. The results reveal a large network of task-related activity. Both the extent of this network and activity in regions commonly observed in studies of Chinese reading are apparently related to task difficulty. Other regions, including temporo-parietal cortex, were sensitive to particular sublexical functional units in mapping among print, sound, and meaning.

from Brain and Language

Altered motor network activation and functional connectivity in adult tourette’s syndrome

Tourette’s syndrome (TS) is a developmental neuropsychiatric disorder characterized by motor and vocal tics as well as psychiatric comorbidities. Disturbances of the fronto-striatal-thalamic pathways responsible for motor control and impulse inhibition have been previously described in other studies. Although differences in motor performance are well recognized, imaging data elucidating the neuronal correlates are scarce. Here, we examined 19 adult TS patients (13 men, aged 22–52 years, mean = 34.3 years) and 18 age- and sex-matched controls (13 men, aged 24–57 years, mean = 37.6 years) in a functional magnetic resonance imaging study at 1.5 T. We corrected for possible confounds introduced by tics, motion, and brain-structural differences as well as age, sex, comorbidities, and medication. Patients and controls were asked to perform a sequential finger-tapping task using their right, left, and both hands, respectively. Task performance was monitored by simultaneous MR-compatible video recording. Although behavioral data obtained during scanning did not show significant differences across groups, we observed differential neuronal activation patterns depending on both handedness (dominant vs. nondominant) and tapping frequency in frontal, parietal, and subcortical areas. When controlling for open motor performance, a failure of deactivation in easier task conditions was found in the subgenual cingulate cortex in the TS patients. In addition, performance-related functional connectivity of lower- and higher-order motor networks differed between patients and controls. In summary, although open performance was comparable, patients showed different neuronal networks and connectivity patterns when performing increasingly demanding tasks, further illustrating the impact of the disease on the motor system. Hum Brain Mapp, 2011. © 2011 Wiley-Liss, Inc.

from Human Brain Mapping

Sensory-motor brain network connectivity for speech comprehension

The act of listening to speech activates a large network of brain areas. In the present work, a novel data-driven technique (the combination of independent component analysis and Granger causality) was used to extract brain network dynamics from an fMRI study of passive listening to Words, Pseudo-Words, and Reverse-played words. Using this method we show the functional connectivity modulations among classical language regions (Broca’s and Wernicke’s areas) and inferior parietal, somatosensory, and motor areas and right cerebellum. Word listening elicited a compact pattern of connectivity within a parieto-somato-motor network and between the superior temporal and inferior frontal gyri. Pseudo-Word stimuli induced activities similar to the Word condition, which were characterized by a highly recurrent connectivity pattern, mostly driven by the temporal lobe activity. Also the Reversed-Word condition revealed an important influence of temporal cortices, but no integrated activity of the parieto-somato-motor network. In parallel, the right cerebellum lost its functional connection with motor areas, present in both Word and Pseudo-Word listening. The inability of the participant to produce the Reversed-Word stimuli also evidenced two separate networks: the first was driven by frontal areas and the right cerebellum toward somatosensory cortices; the second was triggered by temporal and parietal sites towards motor areas. Summing up, our results suggest that semantic content modulates the general compactness of network dynamics as well as the balance between frontal and temporal language areas in driving those dynamics. The degree of reproducibility of auditory speech material modulates the connectivity pattern within and toward somatosensory and motor areas. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc.

from Human Brain Mapping


Get every new post delivered to your Inbox.

Join 37 other followers