Variation in Brain Organization and Cerebellar Foliation in Chondrichthyans: Batoids

Interspecific variation in relative brain size (encephalization), the relative size of the five major brain areas (the telencephalon, diencephalon, mesencephalon, cerebellum, and medulla) and the level of cerebellar foliation was assessed in over 20 representative species of batoid (skates and rays), from eight families. Using species as independent data points and phylogenetically independent contrasts, relationships among each of the neuroanatomical variables and two ecological variables, habitat and lifestyle, were assessed. Variation in relative brain size and brain organization appears to be strongly correlated with phylogeny. Members of the basal orders Rajiformes and Torpediniformes tend to have relatively small brains, with relatively small telencephalons, large medullas, and smooth, unfoliated cerebellums. More advanced Myliobatiformes possess relatively large brains, with relatively large telencephalons, small medullas, and complex, heavily foliated cerebellums. Increased brain size, telencephalon size, and cerebellar foliation also correlate with living in a complex habitat (such as in association with coral reefs) and an active, benthopelagic lifestyle, but as primary habitat and lifestyle also closely match phylogenetic relationships in batoids, it is difficult to separate the influence of phylogeny and ecological factors on brain organization in these animals. However, the results of two forms of multivariate analysis (principal component analysis and cluster analysis) reveal that certain species are clustered with others that share ecological traits, rather than with more closely related species from the same order. This suggests that ecological factors do play a role in defining patterns of brain organization and there is some evidence for ‘cerebrotypes’ in batoids.

from

Advertisements

About Callier Library

Housed at the internationally renowned Callier Center for Communication Disorders, Callier Library a branch facility of the McDermott Library at The University of Texas at Dallas.

Posted on February 28, 2009, in Research. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: