Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes

Experimental animal models have suggested that the modulation of the amplitude and direction of vestibular reflexes are important functions of the vestibulocerebellum and contribute to the control of gaze and balance. These critical vestibular functions have been infrequently quantified in human cerebellar disease. In 13 subjects with ataxia telangiectasia (A-T), a disease associated with profound cerebellar cortical degeneration, we found abnormalities of several key vestibular reflexes. The vestibuloocular reflex (VOR) was measured by eye movement responses to changes in head rotation. The vestibulocollic reflex (VCR) was assessed with cervical vestibular-evoked myogenic potentials (cVEMPs), in which auditory clicks led to electromyographic activity of the sternocleidomastoid muscle. The VOR gain (eye velocity/head velocity) was increased in all subjects with A-T. An increase of the VCR, paralleling that of the VOR, was indirectly suggested by an increase in cVEMP amplitude. In A-T subjects, alignment of the axis of eye rotation was not with that of head rotation. Subjects with A-T thus manifested VOR cross-coupling, abnormal eye movements directed along axes orthogonal to that of head rotation. Degeneration of the Purkinje neurons in the vestibulocerebellum probably underlie these deficits. This study offers insights into how the vestibulocerebellum functions in healthy humans. It may also be of value to the design of treatment trials as a surrogate biomarker of cerebellar function that does not require controlling for motivation or occult changes in motor strategy on the part of experimental subjects.

from the Journal of Neurosphysiology


About Callier Library

Housed at the internationally renowned Callier Center for Communication Disorders, Callier Library a branch facility of the McDermott Library at The University of Texas at Dallas.

Posted on June 16, 2011, in Research. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: