Non-Language Thinking in Mathematics

After a brief outline of the topic of non-language thinking in mathematics the central phenomenological tool in this concern is established, i.e. the eidetic method. The special form of eidetic method in mathematical proving is implicit variation and this procedure entails three rules that are established in a simple geometrical example. Then the difficulties and the merits of analogical thinking in mathematics are discussed in different aspects. On the background of a new phenomenological understanding of the performance of non-language thinking in mathematics the well-known theses of B. L. van der Waerden that mathematical thinking to a great extent proceeds without the use of language is discussed in a new light.

from Axiomathes

Advertisements

About Callier Library

Housed at the internationally renowned Callier Center for Communication Disorders, Callier Library a branch facility of the McDermott Library at The University of Texas at Dallas.

Posted on June 28, 2011, in Research. Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: