Neural bases of childhood speech disorders: lateralization and plasticity for speech functions during development

Current models of speech production in adults emphasize the crucial role played by the left perisylvian cortex, primary and pre-motor cortices, the basal ganglia, and the cerebellum for normal speech production. Whether similar brain-behaviour relationships and leftward cortical dominance are found in childhood remains unclear. Here we reviewed recent evidence linking motor speech disorders (apraxia of speech and dysarthria) and brain abnormalities in children and adolescents with developmental, progressive, or childhood-acquired conditions. We found no evidence that unilateral damage can result in apraxia of speech, or that left hemisphere lesions are more likely to result in dysarthria than lesion to the right. The few studies reporting on childhood apraxia of speech converged towards morphological, structural, metabolic or epileptic anomalies affecting the basal ganglia, perisylvian and rolandic cortices bilaterally. Persistent dysarthria, similarly, was commonly reported in individuals with syndromes and conditions affecting these same structures bilaterally. In conclusion, for the first time we provide evidence that longterm and severe childhood speech disorders result predominantly from bilateral disruption of the neural networks involved in speech production.

from Neuroscience and Biobehavioral Reviews

Advertisements

About Callier Library

Housed at the internationally renowned Callier Center for Communication Disorders, Callier Library a branch facility of the McDermott Library at The University of Texas at Dallas.

Posted on August 4, 2011, in Research and tagged , , , , . Bookmark the permalink. Leave a comment.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: