Blog Archives

Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates

Multiple-hour training on a pitch discrimination task dramatically decreases the threshold for detecting a pitch difference between two harmonic complexes. Here, we investigated the specificity of this perceptual learning with respect to the pitch and the resolvability of the trained harmonic complex, as well as its cortical electrophysiological correlates. We trained 24 participants for 12 h on a pitch discrimination task using one of four different harmonic complexes. The complexes differed in pitch and/or spectral resolvability of their components by the cochlea, but were filtered into the same spectral region. Cortical-evoked potentials and a behavioral measure of pitch discrimination were assessed before and after training for all the four complexes. The change in these measures was compared to that of two control groups: one trained on a level discrimination task and one without any training. The behavioral results showed that learning was partly specific to both pitch and resolvability. Training with a resolved-harmonic complex improved pitch discrimination for resolved complexes more than training with an unresolved complex. However, we did not find evidence that training with an unresolved complex leads to specific learning for unresolved complexes. Training affected the P2 component of the cortical-evoked potentials, as well as a later component (250–400 ms). No significant changes were found on the mismatch negativity (MMN) component, although a separate experiment showed that this measure was sensitive to pitch changes equivalent to the pitch discriminability changes induced by training. This result suggests that pitch discrimination training affects processes not measured by the MMN, for example, processes higher in level or parallel to those involved in MMN generation.

from JARO — Journal of the Association for Research in Otolaryngology

Perception of temporally modified speech in auditory neuropathy

Conclusions: A rehabilitation program for AN should consider temporal modification of speech, training for auditory temporal processing and the use of devices with innovative signal processing schemes. Verbal modifications as well as visual imaging appear to be promising compensatory strategies for remediating the affected phonological processing skills.

from the International Journal of Audiology

Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task

Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pitch contour. Behavioral measures of pitch discrimination and FFRs for all the stimuli were measured before and after the training phase for these participants, as well as for an untrained control group (n = 12). Trained participants showed significant improvements in pitch discrimination compared to the control group for all three trained stimuli. These improvements were partly specific for stimuli with the same pitch modulation (dynamic vs. static) and with the same pitch trajectory (rising vs. falling) as the trained stimulus. Also, the robustness of FFR neural phase locking to the sound envelope increased significantly more in trained participants compared to the control group for the static and rising contour, but not for the falling contour. Changes in FFR strength were partly specific for stimuli with the same pitch modulation (dynamic vs. static) of the trained stimulus. Changes in FFR strength, however, were not specific for stimuli with the same pitch trajectory (rising vs. falling) as the trained stimulus. These findings indicate that even relatively low-level processes in the mature auditory system are subject to experience-related change.

from JARO — Journal of the Association for Research in Otolaryngology

Effect of auditory training on the middle latency response in children with (central) auditory processing disorder

The purpose of this study was to determine the middle latency response (MLR) characteristics (latency and amplitude) in children with (central) auditory processing disorder [(C)APD], categorized as such by their performance on the central auditory test battery, and the effects of these characteristics after auditory training. Thirty children with (C)APD, 8 to 14 years of age, were tested using the MLR-evoked potential. This group was then enrolled in an 8-week auditory training program and then retested at the completion of the program. A control group of 22 children without (C)APD, composed of relatives and acquaintances of those involved in the research, underwent the same testing at equal time intervals, but were not enrolled in the auditory training program. Before auditory training, MLR results for the (C)APD group exhibited lower C3-A1 and C3-A2 wave amplitudes in comparison to the control group [C3-A1, 0.84 µV (mean), 0.39 (SD – standard deviation) for the (C)APD group and 1.18 µV (mean), 0.65 (SD) for the control group; C3-A2, 0.69 µV (mean), 0.31 (SD) for the (C)APD group and 1.00 µV (mean), 0.46 (SD) for the control group]. After training, the MLR C3-A1 [1.59 µV (mean), 0.82 (SD)] and C3-A2 [1.24 µV (mean), 0.73 (SD)] wave amplitudes of the (C)APD group significantly increased, so that there was no longer a significant difference in MLR amplitude between (C)APD and control groups. These findings suggest progress in the use of electrophysiological measurements for the diagnosis and treatment of (C)APD.

from Brazilian Journal of Medical and Biological Research

Auditory training: assessment of the benefit of hearing aids in elderly individuals*

auditory training favored the improvement in the auditory processing abilities and benefited the hearing aid fitting process.

from Pró-Fono Revista de Atualização Científica

Auditory training alters the physiological detection of stimulus-specific cues in humans

Results
The P2 wave increased in amplitude after training for both control and experimental stimuli, but the effects differed between stimulus conditions. Whereas the effects of training on P2 amplitude were greatest in the left hemisphere for the trained stimuli, enhanced P2 activity was seen in both hemispheres for the control stimulus. In addition, subjects with enhanced pre-training N1 amplitudes were more responsive to training and showed the most perceptual improvement.

Conclusion
Both stimulus-specific and general effects of training can be measured in humans. An individual’s pre-training N1 response might predict their capacity for improvement.

Significance
N1 and P2 responses can be used to examine physiological correlates of human auditory perceptual learning.

from Clinical Neurophysiology