Blog Archives

Communicating without a functioning language system: Implications for the role of language in mentalizing

A debated issue in the relationship between language and thought is how our linguistic abilities are involved in understanding the intentions of others (’mentalizing’). The results of both theoretical and empirical work have been used to argue that linguistic, and more specifically, grammatical, abilities are crucial in representing the mental states of others. Here we contribute to this debate by investigating how damage to the language system influences the generation and understanding of intentional communicative behaviors. Four patients with pervasive language difficulties (severe global or agrammatic aphasia) engaged in an experimentally controlled non-verbal communication paradigm, which required signaling and understanding a communicative message. Despite their profound language problems they were able to engage in recipient design as well as intention recognition, showing similar indicators of mentalizing as have been observed in the neurologically healthy population. Our results show that aspects of the ability to communicate remain present even when core capacities of the language system are dysfunctional.

from Neuropsychologia

Advertisements

Meaning and the brain: The neurosemantics of referential, interactive, and combinatorial knowledge

Which types of nerve cell circuits enable humans to use and understand meaningful signs and words? Philosophers were the first to point out that the arbitrary links between signs and their meanings differ fundamentally between semantic word types. Neuroscience provided evidence that semantic kinds do indeed matter: Brain diseases affect specific semantic categories and leave others relatively intact. Patterns of precisely timed brain activation in specific areas of cortex reflect the comprehension of words with specific semantic features. The classic referential link between words and the objects they are used to speak about can be understood as a result of associative learning driven by correlated neuronal activity in perisylvian language areas and sensory, especially higher visual but also olfactory, somatosensory and auditory, areas. However, the meaning of words used to speak about actions calls for a different account. For learning their meaning, specific action and interaction contexts are critical, and neuronal links between language and action systems of the human brain likely store such action-semantic information. In fact, after learning, the action system is sparked when such words and utterances are being used or understood, and, correspondingly, functional changes in the brain’s motor system influence the recognition of action-related expressions. These results show that language is “woven into action” at the level of the brain. Word-object, word–action and word-word contexts are discussed in view of further facets of semantics and their brain basis, including emotional-affective, abstract and combinatorial aspects of meaning. All of these aspects and corresponding neuronal circuit types interact in the processing of the meaning of words and sentences in the human mind and brain.

from the Journal of Neurolinguistics

Increased activation in superior temporal gyri as a function of increment in phonetic features

A common assumption is that phonetic sounds initiate unique processing in the superior temporal gyri and sulci (STG/STS). The anatomical areas subserving these processes are also implicated in the processing of non-phonetic stimuli such as music instrument sounds. The differential processing of phonetic and non-phonetic sounds was investigated in this study by applying a “sound-morphing” paradigm, where the presence of phonetic features were parametrically varied, creating a step-wise transition from a non-phonetic sound into a phonetic sound. The stimuli were presented in an event-related fMRI design. The fMRI-BOLD data were analysed using parametric contrasts. The results showed a higher sensitivity for sounds containing phonetic features compared to non-phonetic sounds in the middle part of STG, and in the anterior part of the planum temporale (PT) bilaterally. Although the same areas were involved in the processing of non-phonetic sounds, a difference in activation was evident in the STG, with an increase in activation related to increment of phonetic features in the sounds. The results indicate a stimulus-driven, bottom-up process that utilizes general auditory resources in the secondary auditory cortex, depending on specific phonetic features in the sounds.

from Brain and Language

Neuroanatomical changes due to hearing loss and chronic tinnitus: A combined VBM and DTI study

Subjective tinnitus is the perception of sound in the absence of an external source. Tinnitus is often accompanied by hearing loss but not everyone with hearing loss experiences tinnitus. We examined neuroanatomical alterations associated with hearing loss and tinnitus in three groups of subjects: those with hearing loss with tinnitus, those with hearing loss without tinnitus and normal hearing controls without tinnitus. To examine changes in gray matter we used structural MRI scans and voxel-based morphometry (VBM) and to identify changes in white matter tract orientation we used diffusion tensor imaging (DTI). A major finding of our study was that there were both gray and white matter changes in the vicinity of the auditory cortex for subjects with hearing loss alone relative to those with tinnitus and those with normal hearing. We did not find significant changes in gray or white matter in subjects with tinnitus and hearing loss compared to normal hearing controls. VBM analysis revealed that individuals with hearing loss without tinnitus had gray matter decreases in anterior cingulate and superior and medial frontal gyri relative to those with hearing loss and tinnitus. Region-of-interest analysis revealed additional decreases in superior temporal gyrus for the hearing loss group compared to the tinnitus group. Investigating effects of hearing loss alone, we found gray matter decreases in superior and medial frontal gyri in participants with hearing loss compared to normal hearing controls. DTI analysis showed decreases in fractional anisotropy values in the right superior and inferior longitudinal fasciculi, corticospnial tract, inferior fronto-occipital tract, superior occipital fasciculus, and anterior thalamic radiation for the hearing loss group relative to normal hearing controls. In attempting to dissociate the effect of tinnitus from hearing loss, we observed that hearing loss rather than tinnitus had the greatest influence on gray and white matter alterations.

from Brain Research

Neuroimaging with Near-Infrared Spectroscopy Demonstrates Speech-Evoked Activity in the Auditory Cortex of Deaf Children Following Cochlear Implantation

Cochlear implants (CI) are commonly used to treat deafness in young children. While many factors influence the ability of a deaf child who is hearing through a CI to develop speech and language skills, an important factor is that the CI has to stimulate the auditory cortex. Obtaining behavioral measurements from young children with CIs can often be unreliable. While a variety of noninvasive techniques can be used for detecting cortical activity in response to auditory stimuli, many have critical limitations when applied to the pediatric CI population. We tested the ability of near-infrared spectroscopy (NIRS) to detect cortical responses to speech stimuli in pediatric CI users. Neuronal activity leads to changes in blood oxy- and de-oxyhemoglobin concentrations that can be detected by measuring the transmission of near-infrared light through the tissue. To verify the efficacy of NIRS, we first compared auditory cortex responses measured with NIRS and fMRI in normal-hearing adults. We then examined four different participant cohorts with NIRS alone. Speech-evoked cortical activity was observed in 100% of normal-hearing adults (11 of 11), 82% of normal-hearing children (9 of 11), 78% of deaf children who have used a CI >4 months (28 of 36), and 78% of deaf children who completed NIRS testing on the day of CI initial activation (7 of 9). Therefore, NIRS can measure cortical responses in pediatric CI users, and has the potential to be a powerful adjunct to current CI assessment tools.

from Hearing Research

Semantic, Factual, and Social Language Comprehension in Adolescents with Autism: An FMRI Study

Language in high-functioning autism is characterized by pragmatic and semantic deficits, and people with autism have a reduced tendency to integrate information. Because the left and right inferior frontal (LIF and RIF) regions are implicated with integration of speaker information, world knowledge, and semantic knowledge, we hypothesized that abnormal functioning of the LIF and RIF regions might contribute to pragmatic and semantic language deficits in autism. Brain activation of sixteen 12- to 18-year-old, high-functioning autistic participants was measured with functional magnetic resonance imaging during sentence comprehension and compared with that of twenty-six matched controls. The content of the pragmatic sentence was congruent or incongruent with respect to the speaker characteristics (male/female, child/adult, and upper class/lower class). The semantic- and world-knowledge sentences were congruent or incongruent with respect to semantic expectancies and factual expectancies about the world, respectively. In the semantic-knowledge and world-knowledge condition, activation of the LIF region did not differ between groups. In sentences that required integration of speaker information, the autism group showed abnormally reduced activation of the LIF region. The results suggest that people with autism may recruit the LIF region in a different manner in tasks that demand integration of social information.

from Cerebral Cortex

Cortical Anatomy in Autism Spectrum Disorder: An In Vivo MRI Study on the Effect of Age

There is increasing evidence that children with autism spectrum disorder (ASD) have age-related differences from controls in cortical volume (CV). It is less clear, however, if these persist in adulthood and whether these reflect alterations in cortical thickness (CT) or cortical surface area (SA). Hence, we used magnetic resonance imaging to investigate the relationship between age and CV, CT, and SA in 127 males aged 10 through 60 years (76 with ASD and 51 healthy controls). “Regional” analyses (using cortical parcellation) identified significant age-by-group interactions in both CV and CT (but not SA) in the temporal lobes and within these the fusiform and middle temporal gyri. Spatially nonbiased “vertex-based” analysis replicated these results and identified additional “age-by-group” interactions for CT within superior temporal, inferior and medial frontal, and inferior parietal cortices. Here, CV and CT were 1) significantly negatively correlated with age in controls, but not in ASD, and 2) smaller in ASD than controls in childhood but vice versa in adulthood. Our findings suggest that CV dysmaturation in ASD extends beyond childhood, affects brain regions crucial to social cognition and language, and is driven by CT dysmaturation. This may reflect primary abnormalities in cortical plasticity and/or be secondary to disturbed interactions between individuals with ASD and their environment.

from Cerebral Cortex

MRI predictors of cognitive change in a diverse and carefully characterized elderly population

Baseline measures of brain structure and tissue pathology predicted rate of cognitive decline in a diverse and carefully characterized cohort, suggesting that they may provide summary measures of pre-existing neuropathological damage or the capacity of the brain to compensate for the impact of subsequent neuropathology on cognition. Conventional MRI measures may have use for predicting cognitive outcomes in highly heterogeneous elderly populations.

from Neurobiology of Aging

Representation of the speech effectors in the human motor cortex: Somatotopy or overlap?

Somatotopy within the orofacial region of the human motor cortex has been a central concept in interpreting the results of neuroimaging and transcranial magnetic stimulation studies of normal and disordered speech. Yet, somatotopy has been challenged by studies showing overlap among the effectors within the homunculus. In order to address this dichotomy, we performed four voxel-based meta-analyses of 54 functional neuroimaging studies of non-speech tasks involving respiration, lip movement, tongue movement, and swallowing, respectively. While the centers of mass of the clusters supported the classic homuncular view of the motor cortex, there was significant variability in the locations of the activation-coordinates among studies, resulting in an overlapping arrangement. This “somatotopy with overlap” might reflect the intrinsic functional interconnectedness of the oral effectors for speech production.

from Brain and Language

Brain embodiment of syntax and grammar: Discrete combinatorial mechanisms spelt out in neuronal circuits

Neuroscience has greatly improved our understanding of the brain basis of abstract lexical and semantic processes. The neuronal devices underlying words and concepts are distributed neuronal assemblies reaching into sensory and motor systems of the cortex and, at the cognitive level, information binding in such widely dispersed circuits is mirrored by the sensorimotor grounding of form and meaning of symbols. Recent years have seen the emergence of evidence for similar brain embodiment of syntax. Neurophysiological studies have accumulated support for the linguistic notion of abstract combinatorial rules manifest as functionally discrete neuronal assemblies. Concepts immanent to the theory of abstract automata could be grounded in observations from modern neuroscience, so that it became possible to model abstract pushdown storage – which is critical for building linguistic tree structure representations – as ordered dynamics of memory circuits in the brain. At the same time, neurocomputational research showed how sequence detectors already known from animal brains can be neuronally linked so that they merge into larger functionally discrete units, thereby underpinning abstract rule representations that syntactically bind lexicosemantic classes of morphemes and words into larger meaningful constituents. Specific predictions of brain-based grammar models could be confirmed by neurophysiological and brain imaging experiments using MEG, EEG and fMRI. Neuroscience and neurocomputational research offering perspectives on understanding abstract linguistic mechanisms in terms of neuronal circuits and their interactions therefore point programmatic new ways to future theory-guided experimental investigation of the brain basis of grammar.

from Brain and Language

A Bivariate Twin Study of Regional Brain Volumes and Verbal and Nonverbal Intellectual Skills During Childhood and Adolescence

Twin studies indicate that both intelligence and brain structure are moderately to highly heritable. Recent bivariate studies of adult twins also suggest that intelligence and brain morphometry are influenced by shared genetic factors. The current study examines shared genetic and environmental factors between brain morphometry and intelligence in a sample of children and adolescents (twins, twin siblings, and singletons; n = 649, ages 4–19). To extend previous studies, brain morphometric data were parsed into subregions (lobar gray/white matter volumes, caudate nucleus, lateral ventricles) and intelligence into verbal and nonverbal skills (Wechsler Vocabulary and Block Design subtests). Phenotypic relationships between brain volumes and intelligence were small. Verbal skills shared unique environmental effects with gray matter volumes while nonverbal skills shared genetic effects with both global and regional gray and white matter. These results suggest that distinct mechanisms contribute to the small phenotypic relationships between brain volumes and verbal versus nonverbal intelligence.

from Behavior Genetics

Language or music, mother or Mozart? Structural and environmental influences on infants’ language networks

Understanding how language emerged in our species calls for a detailed investigation of the initial specialization of the human brain for speech processing. Our earlier research demonstrated that an adult-like left-lateralized network of perisylvian areas is already active when infants listen to sentences in their native language, but did not address the issue of the specialization of this network for speech processing. Here we used fMRI to study the organization of brain activity in two-month-old infants when listening to speech or to music. We also explored how infants react to their mother’s voice relative to an unknown voice. The results indicate that the well-known structural asymmetry already present in the infants’ posterior temporal areas has a functional counterpart: there is a left-hemisphere advantage for speech relative to music at the level of the planum temporale. The posterior temporal regions are thus differently sensitive to the auditory environment very early on, channelling speech inputs preferentially to the left side. Furthermore, when listening to the mother’s voice, activation was modulated in several areas, including areas involved in emotional processing (amygdala, orbito-frontal cortex), but also, crucially, a large extent of the left posterior temporal lobe, suggesting that the mother’s voice plays a special role in the early shaping of posterior language areas. Both results underscore the joint contributions of genetic constraints and environmental inputs in the fast emergence of an efficient cortical network for language processing in humans.

from Brain and Language

Reality of auditory verbal hallucinations

Distortion of the sense of reality, actualized in delusions and hallucinations, is the key feature of psychosis but the underlying neuronal correlates remain largely unknown. We studied 11 highly functioning subjects with schizophrenia or schizoaffective disorder while they rated the reality of auditory verbal hallucinations (AVH) during functional magnetic resonance imaging (fMRI). The subjective reality of AVH correlated strongly and specifically with the hallucination-related activation strength of the inferior frontal gyri (IFG), including the Broca’s language region. Furthermore, how real the hallucination that subjects experienced was depended on the hallucination-related coupling between the IFG, the ventral striatum, the auditory cortex, the right posterior temporal lobe, and the cingulate cortex. Our findings suggest that the subjective reality of AVH is related to motor mechanisms of speech comprehension, with contributions from sensory and salience-detection-related brain regions as well as circuitries related to self-monitoring and the experience of agency.

from Brain

The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

Abstract
Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries.

from Brain and Language

The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon is accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we used an event-related design, which allowed us to isolate trial-related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial-related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries.

from Brain and Language