Blog Archives

CNTNAP2 variants affect early language development in the general population

Early language development is known to be under genetic influence, but the genes affecting normal variation in the general population remain largely elusive. Recent studies of disorder reported that variants of the CNTNAP2 gene are associated both with language deficits in specific language impairment (SLI) and with language delays in autism. We tested the hypothesis that these CNTNAP2 variants affect communicative behavior, measured at 2 years of age in a large epidemiological sample, the Western Australian Pregnancy Cohort (Raine) Study. Singlepoint analyses of 1149 children (606 males, 543 females) revealed patterns of association which were strikingly reminiscent of those observed in previous investigations of impaired language, centered on the same genetic markers, and with a consistent direction of effect (rs2710102, p = .0239; rs759178, p = .0248). Based on these findings we performed analyses of four-marker haplotypes of rs2710102-rs759178-rs17236239-rs2538976, and identified significant association (haplotype TTAA, p = .049; haplotype GCAG, p = .0014). Our study suggests that common variants in the exon 13-15 region of CNTNAP2 influence early language acquisition, as assessed at age 2, in the general population. We propose that these CNTNAP2 variants increase susceptibility to SLI or autism when they occur together with other risk factors.

from Genes, Brain, and Behavior

Advertisements

Analysis of dyslexia candidate genes in the Raine cohort representing the general Australian population

Several genes have been suggested as dyslexia candidates. Some of these candidate genes have been recently shown to be associated with literacy measures in sample cohorts derived from the general population. Here, we have conducted an association study in a novel sample derived from the Australian population (the Raine cohort) to further investigate the role of dyslexia-candidate genes. We analysed markers, previously reported to be associated with dyslexia, located within the MRPL19/C2ORF3, KIAA0319, DCDC2 and DYX1C1 genes in a sample of 520 individuals and tested them for association with reading and spelling measures. Association signals were detected for several SNPs within DYX1C1 with both the reading and spelling tests. The high linkage disequilibrium we observed across the DYX1C1 gene suggests that the association signal might not be refined by further genetic mapping.

from Genes, Brain and Behavior